Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2.

نویسندگان

  • Hugo Jan de Boer
  • Emmy I Lammertsma
  • Friederike Wagner-Cremer
  • David L Dilcher
  • Martin J Wassen
  • Stefan C Dekker
چکیده

Plant physiological adaptation to the global rise in atmospheric CO(2) concentration (CO(2)) is identified as a crucial climatic forcing. To optimize functioning under rising CO(2), plants reduce the diffusive stomatal conductance of their leaves (g(s)) dynamically by closing stomata and structurally by growing leaves with altered stomatal densities and pore sizes. The structural adaptations reduce maximal stomatal conductance (g(smax)) and constrain the dynamic responses of g(s). Here, we develop and validate models that simulate structural stomatal adaptations based on diffusion of CO(2) and water vapor through stomata, photosynthesis, and optimization of carbon gain under the constraint of a plant physiological cost of water loss. We propose that the ongoing optimization of g(smax) is eventually limited by species-specific limits to phenotypic plasticity. Our model reproduces observed structural stomatal adaptations and predicts that adaptation will continue beyond double CO(2). Owing to their distinct stomatal dimensions, angiosperms reach their phenotypic response limits on average at 740 ppm and conifers on average at 1,250 ppm CO(2). Further, our simulations predict that doubling today's CO(2) will decrease the annual transpiration flux of subtropical vegetation in Florida by ≈60 W·m(-2). We conclude that plant adaptation to rising CO(2) is altering the freshwater cycle and climate and will continue to do so throughout this century.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions between Vegetation and Climate: Radiative and Physiological Effects of Doubled Atmospheric CO2

The radiative and physiological effects of doubled atmospheric carbon dioxide (CO2) on climate are investigated using a coupled biosphere–atmosphere model. Five 30-yr climate simulations, designed to assess the radiative and physiological effects of doubled CO2, were compared to a 30-yr control run. When the CO2 concentration was doubled for the vegetation physiological calculations only assumi...

متن کامل

Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations

Vegetation has different adjustable properties for adaptation to its environment. Examples include stomatal conductance at short time scale (minutes), leaf area index and fine root distributions at longer time scales (days-months) and species composition and dominant growth forms at very long time scales (years-decades-centuries). As a result, the overall response of evapotranspiration to chang...

متن کامل

Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis

Experimental evidence indicates that the stomatal conductance and nitrogen concentration ([N]) of foliage decline under CO2 enrichment, and that the percentage growth response to elevated CO2 is amplified under water limitation, but reduced under nitrogen limitation. We advance simple explanations for these responses based on an optimisation hypothesis applied to a simple model of the annual ca...

متن کامل

Global Forcing Number for Maximal Matchings under Graph Operations

Let $S= \{e_1,\,e_2‎, ‎\ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$‎. ‎The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the‎ ‎vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$‎, ‎where $d_i=1$ if $e_i\in M$ and $d_i=0$‎ ‎otherwise‎, ‎for each $i\in\{1,\ldots‎ , ‎k\}$‎. ‎We say $S$ is a global forcing set for maximal matchings of $G$‎ ‎if $...

متن کامل

A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration.

BACKGROUND AND AIMS Global climate models predict decreases in leaf stomatal conductance and transpiration due to increases in atmospheric CO2. The consequences of these reductions are increases in soil moisture availability and continental scale run-off at decadal time-scales. Thus, a theory explaining the differential sensitivity of stomata to changing atmospheric CO2 and other environmental ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 10  شماره 

صفحات  -

تاریخ انتشار 2011